# 5. Polytopal Complexes & Shellability

· Our immediate goal: proving the Euler-Poincaré identity

$$-f_{-1} + f_0 - f_1 + f_2 - \cdots + (-1)^d f_d = 0$$

- Recall proof of 3D-case: V-E+F=2 by induction:
  - build planar graph vertex-by-vertex / eage-by-eage
  - · check identify for single-vertex graph
  - · check that each step preserves identity



- Can we as well build higher climensional polytopes
  piece by piece? Moybe facet-by facet?
  - What are the objects we encounter on the way?
  - not quite polytopes, since not "closed up" yet
  - -> polytopal complexes

# 5.1 Polytopal complexes



"polytopes glued together along facer"

Def: A (polytopal) complex & is a family of for our purpose

polytopes P1..., Pm C IR of so that

not necessarily

(i) if  $P \in \mathbb{Z}$  and  $f \in \mathcal{F}(P) \longrightarrow f \in \mathbb{Z}$ (ii) if  $P,Q \in \mathbb{Z} \longrightarrow P \cap Q$  is a face of both P and Q.



One uses terminology close to polytopes

- e elements of C are called faces
- highest-dimensional faces are called facets
- the climensian of Z is the dimension of a facet

Det: 20 is pure if every face lies in a facet

See examplex above: (1) is pure, (2) is not

- each polytope P can be considered as a complex C := F(P)
- · the boundary complex of PCRd is

This is a pure (d-1) - complex



#### Idea for proving Euler-Poinceré:

- · Complexes have f-vectors
- e for a complex 2 one might ast for the value of

$$\chi(z) := -f_1 + f_0 - f_1 + \dots + (-1)^{d} f_{d}$$
.

"reduced Euler characteristic"

- let's build a polytope facet-by-facet by enumerating the facets  $f_1, ..., F_m$
- · determine  $\chi(f_1)$
- · check that adding a facet keeps identify valid

BUT: it turns out there are right and wrong ways to enumerate the facets!

-> order matters

# 5.2. Shellings

-> the right way to ordor polytope facets The following definition is recursive

Def: a shelling is an enumeration Fig., Fm & Fd-, (P) of the facets of DP (works with any pure complex) so that either

- (i) the Fi are points (i.e. Pisaline resment -> order does not matter) 05
- (ii) for all i { {2,..., m}: Fin (Fiu... u Fin) is non-empty and an inital resment of a shelling of OF;

NOTE: - OF; is snellable - Fin(Fiu...ufi-,) is pure (ol-2)-chimensional

#### txamples:

2D:



the first facet FanFz must can be anywhere



be non-empty



For the must be connected at all times







Q: Do polytopes always have shellings?

-> Yes, but let us first see that shellings are incleed the right definition for us.

### 5.3. Proving the Euler-Poincaré identity

Thm: PCRd, then

•  $\chi(P) = -f_{-1} + f_0 - f_1 + \dots + (-1)^d f_{cl} = 0$ or equivalently

•  $\chi(\partial P) = -(-1)^{d}$ 

#### Proof:

- · assume Fi..., Fm & Fa-1 (P) is a shelling
- · we actually show the following:

(\*) 
$$\chi(f_1 \cup \dots \cup f_i) = 0$$
 as long as  $i < m$ ,

and  $\chi(F_n \cup \dots \cup F_m) = -(-1)^d$  only when we put in the last facet

· we proceed by induction on ol

Ex: verify induction base de {1,2}

· We need the following

Claim: 
$$\chi(\mathcal{E}\cup\mathcal{D}) = \chi(\mathcal{E}) + \chi(\mathcal{D}) - \chi(\mathcal{E}\cap\mathcal{D})$$

- Since  $\chi$  is linear in the f-vector, this follows from  $f(\mathcal{L} \cup \mathcal{D}) = f(\mathcal{L}) + f(\mathcal{D}) - \chi(\mathcal{L} \cap \mathcal{D})$ 

- taking the union ZUD adds up the face numbers, except where they are "glued together" (in ZND), there we overcount and need to subtract again.
- e let's now show (\*) by induction on i:

- IB: 
$$i=1 \rightarrow \chi(F_n) = 0$$
 by IH(d-1)

Note: we have two intertwined inductions, one on d, one on i.

Here we need the specific definition of

 $=\chi(F_i \cup \dots \cup F_{i-1}) + \chi(F_i) - \chi((F_i \cup \dots \cup F_{i-1}) \cap F_i)$ 

$$= 0 \text{ by IH}(i-1) = 0 \text{ by IH}(d-1)$$

in a rhelling of Of;

- There are two cares:

i < m: the initial segment is proper (not all of 27;)

$$\rightarrow -\chi(\cdots) = 0$$
by IH(d-1)

(one should show this but can be easily seen from the shelling we construct lator)

$$i = m : F_{i} \cap (F_{i} \cup \dots \cup F_{i-1}) = \partial F_{i}$$

$$\longrightarrow -\chi(\dots) = -\chi(\partial F_{i}) = -(-(-1)^{d-1}) = -(-1)^{d}$$
by IH(d-1)

# 5.4. Existence of Shellings

Not every complex is chellable



Ex: convince yourself
that this torus is
not snellable
(the problems are the notes)

- One should expect that only "spherical complexer" are shellable (since we proved  $\chi = 0$ )
- o in fact: 2P is always shellable!
- so doing it naively does not work.

Def: The linear shelling is defined as follows:

- Start from PCRd
- look at its polar dual Po
- facets of P correspond to vertices of P°
- choose a generic alirection CE IRd
- order vertices of fo according to <.,c>
  - on facets this is the linear shelling

P





In the following assume that  $F_1,...,F_m$  is the linear shelling, and  $v: \in F_0(P^o)$  corresponde to  $F_i$ .

#### Thm:

- (i) the linear enelling is a enelling of 2P
- (ii) the Fi with  $\langle v_i, c \rangle < \kappa$  (for some  $\kappa$ ) form an initial sesment of a shelling of  $\partial P$  (follows immediately from (i) but important for the inductive proof)

#### Proof:

- · induction on the dimension of of P
- fix a facet Fi, i≥2 of P
- Fi corresponds to a vertex vie Fo(P°)
- · consider the vertex figure Polv;







- recell: P/v; is duel to F;
- vertices of P%; correspond to easer of P° incident to T;
- define hypeplene H: <.,c> = <u:,c>
- · vertices of P'/v; "below" H correspond to both
  - 1) vertices of  $P^{\circ}$  adjacent to  $v_i$  that come before  $v_i$ :

    i.e. to the  $F_1, ..., F_{i-1}$  incident to  $F_i$
  - 2) an initial shelling of Fi (by IH(d-1) part (ii))

口

NOTE: replacing c by -c shows that Fm,..., Fn is a shelling as well

- in fact, this is true for any shelling of a polytope Ex: if  $F_1,...,F_m$  is a shelling of a polytope, so is  $F_m,...,F_n$  (show this).
- o one can use this to prove the Dehn-Sommorville equations.

# Let's discuss some other uses of complexes

### 5.5. Schlegel cliagrams

= Visualization technique for 4-polytopes

Def: a point  $x \in \mathbb{R}^d$  lies beyond a facet  $F \in \mathcal{F}_{d-1}(P)$  if it is "below" every facet-defining hyperplane except the one of F.

#### Def:

- fix a facet  $F \in \mathcal{F}_{d-1}(P)$ and a point  $\times$  beyond F.
- Project every other face
   F'EF(P) \ {P,F} onto F
   via point projection towards x.
  - -> this yields a polytopal complex Z

    with support F (=: polytopal subdivion of F)

    := union of all faces
  - -> this is called a Schlegel diagram of P
- The full combinatories of P can be reconstructed from each Schlegel diagram

Ex: Schlegel diagrams are shellable.

#### Examples: • cube



#### • 4-cube



• the other regular 4-polytopes:



Ex: draw Schlegel diagram of tetrahedron prism

= cartesian product of tetrahedron

and line segment

Of a 3-polytope a

Schlegel - oliagram?

NO: see Ziegler

building block
of non-schlegel
Subclivision

[Ziegler]

## 5.6. Abstract complexes & polytopal spheres

An abstract polytopal complex can consist of polytopes that do not necessavily live in the same ambient space. We identify their facets abstractly.

#### Example

o identify eager along arrows and some-colored edges





- is not necessarily embedded into any Euclidean space.
- o A polytopal sphere is an abstract complex homeomorphic to a sphere

E.g. OP is a polytopal sphere comes from a polytopal!

Ex: construct such a sphere from a non-Schlegal subdivision.

Polytopal complex resp. sphere where every face is a simplex.

E.g. P simplicial polytope

→ OP is a simplicial sphere

Some facts about simplicial spheres: (not included in the lecture)

not every simplicial sphere

comes from a polytope

- smallest example: d=4,  $f_0=8$
- OPEN: Does every simplicial sphere come from a non-convex polytope?

  (probably not)
- it is algorithmically undecidable whethor a simplicial complex is a simplicial sphere (in dimension ≥ 5)
- e many combinatorial results for simplicial polytopes extend to spheres (very non-trivially)
  - Dehn Sommerville equations
  - upper bound theorem
  - g-theorem
- -> philosophical point: these results are more about being spherical than about being convex